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Finite-element time-domain simulations of nonlinear eddy current problems require the solution of a large, sparse system of
equations at every time step. Model-order reduction is a powerful tool for reducing the computational effort for this task. In this
paper, an adaptive order-reduction methodology with error control is proposed. In contrast to previous approaches, it treats the
nonlinearity without simplification, by rewriting the original equations as a quadratic-linear system.
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I. INTRODUCTION

ELECTROMAGNETIC devices exhibiting eddy current
phenomena have been successfully analyzed by the finite-

element (FE) method. However, the resulting systems of equa-
tions may comprise several millions of degrees of freedom
(DoF), so that their solution is computationally expensive.
In the linear case, projection-based model-order reduction
(MOR) provides a powerful methodology for reducing memory
consumption and computational times. For the solution of
nonlinear models, however, the need to assemble the equations
on the original, high-dimensional space results in poor speed-
up.

To overcome this limitation, state-of-the-art methods, such
as the TPWL approach [1] or the DEIM [2], employ affine
approximations to the nonlinearity. This class of methods has
in common that the affine approximation is based on a training
process, which selects a concrete set of parameter values.
Despite their usefulness in the trained region, such methods
fail when the system state leaves the trained region of state-
space and the system behavior changes. A different approach to
nonlinear MOR was presented in [3]: The nonlinear equations
are reformulated by introducing auxiliary equations in such a
way that the resulting system is quadratic-linear (QL) in its
variables. For eddy current problems, a non-adaptive MOR
strategy based on QL systems was presented in [4]. It computes
the projection matrix by an offline training process. The
particular treatment of the nonlinearity in [4] does not extend
to steady-state calculations.

This contribution presents a QL formulation for nonlinear
eddy current problems including the stationary limit. The
resulting adaptive method employs a reduced-order model
(ROM) to simulate a trajectory in the time-domain, and it
verifies the solution at each time-step by means of an error
indicator. Only if the error measure exceeds a user-defined
threshold, the FE model is solved to enhance the reduced
state-space. Thus, the procedure achieves significant speedup
compared to conventional FE simulation.

II. THE QUADRATIC EDDY CURRENT MODEL

Following [3], the nonlinear descriptor system

E
d
dt
x = f(x) + Bu (1)

is reformulated such that it is at most quadratic in the state
variables. The resulting system of quadratic-linear differential
algebraic equations (QLDAE) is of the form

E
d
dt
x = Ax + Hx⊗ x + Bu, (2a)

y = CTx, (2b)

wherein E,A,B, and C are constant matrices, and H is a
third-order tensor. This representation is exact and does not
contain any approximation to the nonlinearity. Furthermore, it
allows for projection-based MOR, as in the linear case. Using
a suitable projection matrix V so that

x ≈ Vx̂, (3)

the ROM reads

Ê
d
dt
x̂ = Âx̂ + Ĥx̂⊗ x̂ + B̂u, (4a)

y = ĈT x̂ (4b)

with

X̂ = VTXV, X ∈ {A,E} , (5a)

Ŷ = VTY, Y ∈ {B,C} , (5b)

Ĥ = VTHV ⊗V. (5c)

The AV -A formulation of the nonlinear eddy current prob-
lem [5] leads to the system of partial differential equations

curl ν curlA +
∂

∂t
σ (A + gradV ) = 0, σ > 0, (6a)

div (σA + σ gradV ) = 0, σ > 0, (6b)
curl ν curlA = J i, σ = 0, , (6c)

in the computational domain Ω ⊂ R3. Therein, A denotes
the magnetic vector potential, V the electric scalar potential,
J i the imprinted electric current density, and σ the electric
conductivity. Voltages are computed after [6]. The magnetic



reluctivity ν(·) models saturation effects via

H = ν(‖B‖)B, (7)

where H is the magnetic field strength and B the magnetic flux
density. To derive a formulation that fits into the framework
(2), we choose A, V , and ν as unknowns. FE discretization of
(6) leads to a finite-dimensional system of equations which,
however, does not determine ν. To complete the QLDAE
model, (7) must be included in suitable form.

The reluctivity function ν is usually determined from mea-
surement data. The mathematical model, in contrast, requires
a closed-form representation. Thus, we approximate ν by a
weighted superposition of cubic polynomials:

ν =
∑

i
si
(
c3iB

3 + c2iB
2 + c1iB + c0i

)
, (8)

B = ‖ curlA‖, (9)

with cki obtained from spline interpolation of the measurement
data. The weights si are based on the algebraic sigmoid
function

ς(x) = Kx/
√

1 + (Kx)2 (10)

with steepness K ∈ R. The entries of the FE matrix from (6)
are integrated numerically. Hence (8) and (9) provide additional
equations for each integration point lying in the nonlinear
material domain. While (8) fits into the QLDAE framework
after minor modifications, the norm in (9) does not. However,
given the FE expansion of A,

A =
∑

j
wjaj (11)

with trial functions wj and coefficients aj , the square of (9),

B2 = (
∑

j
curlwjaj)

2, (12)

is a polynomial at most quadratic in its unknowns and hence
a suitable representation.

The adaptive algorithm constructs the ROM successively
based on Proper Orthogonal Decomposition. At each time-
step, the solution of the ROM and a residual-based error
indicator are computed. If the indicator value is above a
certain threshold, the original model is solved to enhance the
projection basis. Details will be given in the full paper.

III. NUMERICAL EXAMPLE

We consider the transformer depicted in Fig. 1(a). The
voltage signal of Fig. 1(b) is applied to the primary coil,
while the secondary coil is short-circuited. The coil currents
are simulated for 60 µs using 600 equally spaced time-steps.
In Fig. 2, good agreement between the ROM solutions and FE
results is observed.

The conventional FE system features 92443 DoF. The QL-
DAE system is obtained by adding 19082 unknowns corre-
sponding to 14 constitutive equations per integration point (6
summands in (8)). Note that the non-reduced QLDAE system
is never solved; it is solely used for the projection (4). The
resulting ROM features 176 DoFs. Total simulation time for
a MATLAB code on an Intel i5-4670K processor is 662 s,
including 33 evaluations of the conventional FE model in the
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(a) Geometry.
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(b) Excitation voltage.

Fig. 1. Two coils on nonlinear ferrite core (1) of quadratic cross-section.
Dimensions are in mm. (2): secondary coil of relative magnetic permeability
µr = 1000 and electrical conductivity σ = 107 S/m. (3): primary coil of
µr = 1 and σ = 0 S/m.
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(a) Primary coil.
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(b) Secondary coil.

Fig. 2. Coil currents. Comparison between the QLDAE-ROM, conventional
FE simulation, and the linear case.

adaptive process. Standard FE simulation takes 2856 s. The
speed-up factor of 4.3 is promising but less impressive than in
the linear case. This is partly because of the prototype state of
the implementation and partly because of the presence of the
third-order tensor.
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